

Why observe the sea?

The state of the art of the Global Ocean Observing System and the experience in the Adriatic Sea

> *Pierluigi Penna, PhD* CNR IRBIM Ancona

Seminar Teaching Week 2024, FishMed-PhD program Fano Marine Center

Pierluigi Penna, brief bio

pierluigi.penna@cnr.it

Degree

- ✓ Ms Computer Science 2010, UniV. Camerino
- PhD Information Sciences and Complex Systems Curricula (XXVI Cycle) 2014, International School of Advanced Studies – UniV. Camerino (MC)

Current activity

CNR

Researcher at the Institute for Marine Biological Resources and Biotechnology of the National Research Council (CNR-IRBIM)

Research activity

Experimental studies of physical and chemical oceanography

- > Hydrology and hydrodynamics of the water column:
 - physicochemical properties
 - currents, waves, weather •

Pierluigi Penna, brief bio Research activity: multidisciplinary approach

Topics We Will Cover:

- Introduction
- DAS:Data Acquisition Systems
- Sensors
- Sensor drift and calibration
- Making Measurements in Ocean
- Architecture of an Ocean Monitoring and Forecasting System
- Satellite and models
- Why observe the sea?
- Open discussion and conclusion

The Global Ocean Observing System

European Global Ocean Observing System

Data acquisition is the sampling, of the real world, to generate data that can be manipulated by a computer

Sometimes abbreviated DAQ or DAS, data acquisition typically involves acquisition of signals and waveforms and *processing the signals to obtain desired information*

The components of data acquisition systems include appropriate **sensors** that convert any measurement parameter to an electrical signal, then **conditioning the electrical signal** which can then be acquired by **data acquisition hardware**

Acquired data are **displayed**, **analyzed**, **and stored on a computer**, either using vendor supplied software, or custom displays and control can be developed using various general purpose programming language

Fano Marine Center, March 1, 2024

CNR

Signals may be digital (also called logic signal a separities) of analog depending an interview of the sensor signal as the sense of the sensor sense of the sensor isolation, linearization, etc.

Why observe the sea?

Fano Marine Center, March 1, 2024

From an analog source to digital data, ready to be processed by a computer and software

CNR

Fano Marine Center, March 1, 2024

Focus on sensors

Fano Marine Center, March 1, 2024

A **sensor** is a device that measures a <u>physical quantity and converts it into a signal</u> which can be read by an observer or by an instrument

For example, a mercury thermometer converts the measured temperature into expansion and contraction of a liquid which can be read on a calibrated glass tube

A thermocouple converts temperature to an output voltage which can be read by a voltmeter

Temperature

Fano Marine Center, March 1, 2024

Pierluigi Penna – CNR IRBIM Ancona

Light

A sensor's Sensitivity indicates how much the sensor's output changes when the measured quantity changes. For instance, if the mercury in a thermometer moves 1 cm when the temperature changes by 1 °C, the sensitivity is 1 cm/°C

Sensors that measure very small changes must have very high sensitivities

The resolution of a sensor is the smallest change it can detect in the quantity that it is measuring. The resolution is related to the precision with which the measurement is made

Sensors also have an impact on what they measure; for instance, a room temperature thermometer inserted into a hot cup of liquid cools the liquid while the liquid heats the thermometer

Technological progress allows more and more sensors to be manufactured on a microscopic scale as microsensors using MEMS technology.

In most cases, a microsensor reaches a significantly higher speed and sensitivity compared with macroscopic approaches.

CNR IRBIN

Vibration

Blood pressure

Why observe the sea?

Fano Marine Center, March 1, 2024

Some statistic : Standard Deviation

A data set with mean=50 and standard deviation=20

In probability theory and statistics, **standard deviation** is a measure of the variability or dispersion of a population, a data set, or a **probability distribution**

A low standard deviation indicates that the data points tend to be very close to the same value (the mean), while high standard deviation indicates that the data are "spread out" over a large range of values.

Fano Marine Center, March 1, 2024

Normally distributed data: normal distribution (or Bell curve)

Date k cleart at litrast the open stays and to be at is mithation for the formal equivalence of the set of th

Why observe the sea?

CNR

Fano Marine Center, March 1, 2024

In The fields of cielculation give an inge as dusing an class tates tics, which is one prior the class, dergraine of but soft as which are a present of the class of a software of the class of the clas

called Valid if it is both accurate and precise.

Aqque actais a let of the independent variable) and error (random variability), the degree to which further measurements or calculations show the same or similar factors unrelated by the independent variable) and error (random variability), results respectively

High accuracy, but low precision

High precision, but low accuracy

Accuracy is the degree of veracity while precision is the degree of reproducibility

The analogy used here to explain the difference between accuracy and precision is the target comparison. In this analogy, repeated measurements are compared to arrows that are shot at a target.

Accuracy describes the closeness of arrows to the bullseye at the target center. Arrows that strike closer to the bullseye are considered more accurate.

The closer a system's measurements to the accepted value, the more accurate the system is considered to be

Why observe the sea?

Fano Marine Center, March 1, 2024

High accuracy, but low precision

High precision, but low accuracy

To continue the analogy, if a large number of arrows are shot, precision would be the size of the arrow cluster.

When all arrows are grouped tightly together, the cluster is considered precise since they all struck close to the same spot, if not necessarily near the bullseye

The measurements are precise, though not necessarily accurate

Why observe the sea?

Fano Marine Center, March 1, 2024

High accuracy, but low precision

High precision, but low accuracy

However, it is not possible to reliably achieve accuracy in individual measurements without precision — if the arrows are not grouped close to one another, they cannot all be close to the bullseye

Their average position might be an accurate estimation of the bullseye, but the individual arrows are inaccurate

Fano Marine Center, March 1, 2024

- Ideally a measurement device is both accurate and precise, with measurements all close to and tightly clustered around the known value.
- The accuracy and precision of a measurement process is usually established by repeatedly measuring some traceable reference standard
- Such standards are defined in the International System of Units and maintained by national standards organizations such as the National Institute of Standards and Technology or ISO
- In some literature, precision is defined as the reciprocal of variance, while many others still confuse precision with the confidence interval
- The interval defined by the standard deviation is the 68.03% ("one sigma") confidence interval of the measurements
- If enough measurements have been made to accurately estimate the standard deviation of the process, and if the measurement process produces <u>normally</u> <u>distributed errors</u>, then it is likely that 68.03% of the time, <u>the true value of the</u> <u>measured property</u> will lie within one standard deviation, 95.4% of the time it will lie within two standard deviations, and 99.7% of the time it will lie within three standard deviations of the measured value.

This also applies when measurements are repeated and averaged. In that case, the term standard error is properly applied: the precision of the average is equal to the known standard deviation of the process divided by the square root of the number of measurements averaged.

Further, the central limit theorem shows that the probability distribution of the averaged measurements will be closer to a normal distribution than that of individual measurements.

With regard to accuracy we can distinguish:

- the difference between the mean of the measurements and the reference value, the bias. Establishing and correcting for bias is necessary for calibration.
- the combined effect of that and precision

Sensor Response Times

- Sensors do not respond infinitely quickly to changes in their environment
- Sensor response to a step change in their environment is termed their time constant
- Time constant is typically stated as time to come to 63% of final value, given a stepchange in environment

Sensors do not react infinitely quickly to a new environmental condition. The reason for a slower response time for sensors is often found in the packaging of the active element of the sensor.

For example, a <u>thermistor</u> is housed in a thin metal sheath; the delay in response to a sharp change in temperature from warm to cold is due to the time required for the heat in the thermistor to diffuse into the environment.

For a conductivity cell, there is flushing time of the cell.

For a <u>dissolved oxygen sensor</u>, there is the time required for the concentration of O2 near the electrode to equilibrate with the environment. The time constant, or τ (tau), of the sensor is expressed as the time for the sensor to come to 63% of its final value given a step input.

This plot compares the time response of the SBE 3F with the SBE 19*plus*. The SBE 3F has a smaller thermistor and a smaller needle, giving it a faster response time

Why observe the sea?

Fano Marine Center, March 1, 2024

7 seconds at 29.2 °C

40

30

T = 29.2

50

The plot above illustrates the effect that temperature has on a dissolved oxygen sensor. The colder the water that the sensor is working in, the longer it requires to come to a final value

Time in Seconds

20

10

0

CNR

Contemplating a Sensor

> Perfection:

- Reacts to only one physical characteristic of environment
- Has a response to physical characteristic that is easily modeled mathematically

Reality:

- May react to more than one physical characteristic of environment
- Response of sensor may be non-linear or may be parametric, with terms that reflect its reaction to physical characteristics other than one of interest

Sensor deviations

- The sensitivity may in practice differ from the value specified. This is called a sensitivity error, but the sensor is still linear
- If the sensitivity is not constant over the range of the sensor, this is called nonlinearity. Usually this is defined by the amount the output differs from ideal behavior over the full range of the sensor, often noted as a percentage of the full range
- Since the range of the output signal is always limited, the output signal will eventually reach a minimum or maximum when the measured property exceeds the limits. The full scale range defines the maximum and minimum values of the measured property
- If the output signal is not zero when the measured property is zero, the sensor has an offset or bias. This is defined as the output of the sensor at zero input
- If the deviation is caused by a rapid change of the measured property over time, there is a dynamic error. Often, this behaviour is described with a bode plot showing sensitivity error and phase shift as function of the frequency of a periodic input signal
- If the output signal slowly changes independent of the measured property, this is defined as drift

Sensor deviations

Long term drift usually indicates a slow degradation of sensor properties over a long period of time

- Noise is a <u>random deviation</u> of the signal that varies in time. It can be reduced by signal processing, such as filtering, usually at the expense of the dynamic behaviour of the sensor
- Hystereris is an error caused by when the measured property reverses direction, but there is some finite lag in time for the sensor to respond, creating a different offset error in one direction than in the other

If the sensor has a digital output, the output is essentially an approximation of the measured property. <u>The approximation error is also called digitization error</u>

Sensor deviations

- If the signal is monitored digitally, limitation of the sampling frequency also can cause a dynamic error
- The sensor may to some extent be sensitive to properties other than the property being measured. For example, most sensors are influenced by the temperature of their environment
- All these deviations can be classified as systematic errors or

random errors

Sensor drift and calibration

Temperature Sensor Drift Over Time

CNR

Typical drift rate for SBE 3F is 0.0002 °C/month

Why observe the sea?

Fano Marine Center, March 1, 2024

Sensor drift and calibration

Conductivity Sensor Drift Characteristics

CNR

Conductivity sensors typically drift in slope. Drift rate is 0.0003 Siemens/meter/month

Why observe the sea?

Fano Marine Center, March 1, 2024

Sensor drift and calibration Conductivity Sensor Drift Characteristics

 Conductivity cells are very sensitive to coatings on inside of cell

Salinity Error = 35
$$\left(1 - \frac{fouled \ diameter^2}{clean \ diameter^2}\right)$$

= 35 (1 - (3.998)² / (4.000)²) = 0.035 PSU

Conductivity sensors have parts that interact with the seawater. There are 3 electrodes that are subject to fouling, and a cell that must maintain constant dimensions. A 0.001 mm coating will diminish the cell diameter by 0.002 mm, resulting in a salinity error of 0.035 PSU. A film thickness of 0.001 is not uncommon for oils on the sea surface. Another source of fouling is bacterial colonization.

Why observe the sea?

CNR

Fano Marine Center, March 1, 2024

Sensor drift and calibration

Pressure Sensor Drift Over Time

Pressure sensors tend to drift in offset

Typical drift rates are 0.018% - 0.05% of full scale / year. This is easily observed on deck before a cast Occasionally, pressure sensors will exhibit hysteresis (different deck reading at start of cast than end of cast)

Pressure sensors are usually trouble-free. Drifts are generally in offset

Why observe the sea?

Fano Marine Center, March 1, 2024

Sensor drift and calibration

Dissolved O₂ Sensor Drift Over Time

CNR

Drift is expressed as % of full scale/month

Why observe the sea?

Fano Marine Center, March 1, 2024

Calibration

Systematic errors can be compensated for by means of some kind of <u>calibration</u> strategy

Calibration is simply the <u>comparison</u> of Instrument, Measuring and Test Equipment (M&TE), Unit Under Test (UUT), Unit Under Calibration (UUC), a Device Under Test (DUT), <u>or simply a Test Instrument</u> (TI) of unverified accuracy <u>to an instrument</u> <u>Or standards with a known (higher) accuracy</u> to detect or eliminate unacceptable variations. It may or may not involve adjustment or repair

Fano Marine Center, March 1, 2024

Calibration

In daily operations, Calibration Means:

- Accuracy Check: Calibration is like a health checkup for measuring tools. It's the process of making sure that instruments like thermometers or scales are giving you accurate and reliable measurements
- Reference Comparison: Imagine you have a ruler, but you're not sure if it's exactly 12 inches long. Calibration is like comparing it to a known, precise ruler to confirm its accuracy
- Adjustment: Sometimes, instruments may drift and give slightly incorrect readings over time. Calibration involves fine-tuning or adjusting them to ensure they're spot-on
- Standardization: It's like setting the rules for a game. Calibration involves using standardized methods and reference points to ensure that measurements are consistent and can be trusted
- Trust Assurance: Calibration is about building trust in measurements. When something is calibrated, it means you can rely on it to give you trustworthy data, which is crucial in fields like science, engineering, and manufacturing

Temperature Primary Standards

Triple Point of Water Cell

Gallium Melt Cell

Over oceanographic temperature range, triple point of water and melting point of gallium are used as primary standards

- Triple point of water is 0.010000 °C
- Melting point of gallium is 29.764600 °C

Fano Marine Center, March 1, 2024

Pressure Standards

For instruments that have a strain gauge pressure sensor (Druck, Paine, Ametek,etc.), a complete pressure calibration is performed at factory, using Digiquartz pressure sensor as a secondary standard. For instruments (SBE 9*plus*, 26*plus*, 53, etc.) that have a Digiquartz pressure sensor, a true calibration of the sensor is performed by the pressure sensor manufacturer. The quality of the Digiquartz is such that an adequate calibration requires a local gravity survey and dead certified weight tester.

Why observe the sea?

Fano Marine Center, March 1, 2024

Conductivity Primary Standards

Unlike temperature, a primary standard for the conductivity of seawater is more difficult to come by.

In recognition of this, IAPSO commissions the Ocean Scientific International Corporation to provide *standard seawater*. Ocean Scientific sends small ships out into the North Atlantic with large tanks to collect seawater. <u>The seawater is filtered and adjusted in salinity to be 35.000.</u>

It is then sealed in vials or bottles and shipped to laboratories worldwide to be used in standardizing laboratory salinometers. Because everyone uses the same water to standardize their salinometers, we are all synchronized with Ocean Scientific.

The standard seawater service has been going on for decades under the auspices of various committees of scientists. It was first produced by a laboratory in Copenhagen and was initially dubbed Copenhagen water.

0.002

Extract from Calibration certificate

CNR

16 February 2001

BATH T	BATH C 1	INST FREQ	D INST C	RESIDUAI
0.0000	0.00000	2.59209	0.00000	0.00000
-1.4418	2.79561	4.97998	2.79564	0.00003
1.0179	3.00801	5.11588	3.00798	-0.00003
15.1720	4.33156	5.89228	4.33155	-0.00001
18.6482	4.67950	6.07982	4.67950	-0.00000
29.0558	5.76438	6.63029	5.76441	0.00003
32.6136	6.14700	6.81369	6.14698	-0.00002

SBE4 2501

The 16 Feb 2001 data produces the coefficients below

> g = -1.03792385e+001 h = 1.54567700e+000i = -7.48606670e-004

j = 1.54113205e-004

These coefficients are used with the 20 Sept 2000 data to produce the residuals on the right

20 September 2000

BATH T H	BATH C IN	NST FREQ	INST C	RESIDUAL
0.0000	0.00000	2.59204	0.00000	0.00000
-0.9990	2.82081	4.99636	2.82092	0.00011
1.4948	3.03624	5.13381	3.03642	0.00018
15.9426	4.38866	5.92366	4.38901	0.00035
19.1702	4.71177	6.09713	4.71217	0.00040
29.7417	5.81272	6.65398	5.81323	0.00051
33.4512	6.21050	6.84389	6.21098	0.00048

Pierluigi Penna – CNR IRBIM Ancona

20-5ep-00 0.9999230 16-Feb-01 1.0000000

Calibration result

Fano Marine Center, March 1, 2024

Converting Sensor Output to Scientific Units

As we have discussed, a sensor has an active element that interacts with the environment, and a conditioning circuit that converts the reaction into a signal that is measurable with normal techniques (e.g., Analog/Digital conversion or counting of a frequency).

Having acquired a digital representation of temperature or conductivity, we need to convert this into units useful to scientists and engineers.

<u>The simplest sensor might have a linear response to the environmental parameter of</u> interest. For example, a transmissometer has a simple relationship between voltage Output and percent transmittance of the water within its path:

%T = (gain * voltage output) + offset

Why observe the sea?

Fano Marine Center, March 1, 2024

Converting Sensor Output to Scientific Units

....but it's not always that simple!

Sensor output is converted to scientific units via polynomial

For example, a **conductivity sensor** has frequency output f: $C = (g + hf 2 + if 3 + jf 4) / (10 (1 + \delta t + \epsilon p))$

- Coefficients (g, h, i, j) are obtained by calibration
- δ and ϵ are nominal values, characteristics of glass

Keep in mind

- Calibration is about building trust in measurements. When something is calibrated, it means you can rely on it to give you <u>trustworthy data</u>, which is crucial in fields like science, engineering, and manufacturing
- based on your budget, choose the most accurate, precise and fast response time sensor
- We measure physical quantities with instruments so...we always make a measurement error
- a small error in the original measurement can result in a large error in data analysis
- if you use a datasets, always ask for the degree of accuracy of the data (and therefore you will know in what order of magnitude your error is)
- always implement QA/QC procedures
- > share your data openly and FAIR...someone might reuse it for other purposes

Are you tired?

Why observe the sea?

Fano Marine Center, March 1, 2024

break

Why observe the sea?

Fano Marine Center, March 1, 2024

Measurements in Ocean : Temperature

Temperature in the ocean is measured many ways. Thermistors and mercury thermometers are commonly used on ships and buoys. These are calibrated in the laboratory before being used, and after use if possible, using mercury or platinum thermometers with accuracy traceable to national standards laboratories

Mercury Thermometer

This is the most widely used, non-electronic thermometer. It was widely used in buckets dropped over the side of a ship to measure the temperature of surface waters, on Nansen bottles to measure sub-sea temperatures, and in the laboratory to calibrate other thermometers. Accuracy of the best thermometers is about ±0.001°C with very careful calibration.

Measurements in Ocean : Temperature Mercury Thermometer

One very important mercury thermometer is the reversing thermometer carried on Nansen bottles

It is a thermometer that has a constriction in the mercury capillary that causes the thread of mercury to break at a precisely determined point when the thermometer is turned upside down

Pairs of reversing thermometers carried on Nansen bottles were the primary source of sub-sea measurements of temperature as a function of pressure from <u>around 1900</u> to 1970

Why observe the sea?

Fano Marine Center, March 1, 2024

Measurements in Ocean : Temperature

Platinum Resistance Thermometer

This is the standard for temperature. It is used by national standards laboratories to interpolate between defined points on the practical temperature scale. It is used primarily to calibrate other temperature sensors.

Thermistor

A thermistor is a semiconductor having resistance that varies rapidly and predictably with temperature. It has been widely used on moored instruments and on instruments deployed from ships since about 1970.

It has high resolution and an accuracy of about ±0.001°C when carefully calibrated

Measurements in Ocean : Temperature

SBE 3 Thermistor-Based Temperature Sensor

- Active element is a thermistor, a semiconductor that changes resistance when its temperature changes
- Conditioning circuit is an oscillator that changes frequency depending on resistance of thermistor
- Signal is a frequency that is measured with a frequency counter

Pierluigi Penna – CNR IRBIM Ancona

Measurements in Ocean : Conductivity or Salinity

Conductivity is measured by placing platinum electrodes in seawater and measuring the current that flows when there is a known voltage between the electrodes.

The current depends on conductivity, voltage, and volume of sea water in the path between electrodes. If the electrodes are in a tube of nonconducting glass, the volume of water is accurately known, and the current is independent of other objects near the conductivity cell.

The best measurements of salinity from conductivity give salinity with an accuracy of ±0.005

Before conductivity measurements were widely used, salinity was measured using chemical titration of the water sample with silver salts. The best measurements of salinity from titration give salinity with an accuracy of ± 0.02

Measurements in Ocean : Conductivity or Salinity

SBE 4 Conductivity sensor

CNR

Conductivity sensor response is influenced by several factors

- Flow of sample through the cell
- Temperature and heat capacity of the cell
- Electrode condition

A good estimate of SBE 4 time constant is 30 milliseconds. This is typical for all Sea-Bird conductivity cells

Why observe the sea?

Fano Marine Center, March 1, 2024

Measurements in Ocean : Pressure or Depth

Pressure is routinely measured by many different types of instruments. The SI unit of pressure is the pascal (Pa), but <u>oceanographers normally report pressure</u> in decibars (dbar), where:

$1 \text{ dbar} = 10^4 \text{ Pa}$

because the pressure in decibars is almost exactly equal to the depth in meters. Thus 1000 dbar is the pressure at a depth of about 1000 m

Measurements in Ocean : Pressure or Depth

Strain Gage

This is the simplest and cheapest instrument, and it is widely used. Accuracy is about $\pm 1\%$.

Vibratron

Much more accurate measurements of pressure can be made bymeasuring the natural frequency of a vibrating tungsten wire stretched in a magnetic field between diaphragms closing the ends of a cylinder. Pressure distorts the diaphragm, which changes the tension on the wire and its frequency.

The frequency can be measured from the changing voltage induced as the wire vibrates in the magnetic field. Accuracy is about 0.1%, or better when temperature controlled. Precision is 100–1000 times better than accuracy

Measurements in Ocean : Pressure or Depth

Quartz crystal

Very accurate measurements of pressure can also be made by measuring the <u>natural frequency of a quartz crystal</u> cut for minimum temperature dependence. The best accuracy is obtained when the temperature of the crystal is held constant

The accuracy is ±0.015%, and precision is ±0.001% of full-scale values. (used by Sea-bird CTD 9plus)

Measurements in Ocean : **Dissolved Oxygen** Winkler Methods

Samples are collected, fixed and titrated, either in the field or in a lab

the amount of titrant needed to complete the reaction is proportional to the dissolved oxygen concentration of the sample

Fano Marine Center, March 1, 2024

Measurements in Ocean : Dissolved Oxygen

Optical Dissolved Oxygen Sensors

Optical dissolved oxygen sensors measure the interaction between oxygen and certain luminescent dyes. When exposed to blue light, these dyes become excited (electrons gaining energy) and emit light as the electrons return to to their normal energy state. When dissolved oxygen is present, the returned wavelengths are limited or altered due to oxygen molecules interacting with the dye. The measured effect is inversely proportional to the partial pressure of oxygen

Measurements in Ocean : Dissolved Oxygen

polarographic membrane oxygen sensor

polarographic DO sensors use two polarized electrodes, an anode and a cathode, in an electrolyte solution. The electrodes and electrolyte solution are isolated from the sample by a thin, semi-permeable membrane

When taking measurements, dissolved oxygen diffuses across the membrane at a rate proportional to the pressure of oxygen in the water. The dissolved oxygen is then reduced and consumed at the cathode. <u>This reaction produces an electrical current that is directly related to the oxygen concentration</u>

Measurements in Ocean : pH, redox

pH and ORP probes are both used for measuring the <u>acidic intensity</u> of liquid solutions. A pH probe measures acidity on a scale from 0 to 14, with 0 being the most acidic and 14 being the most basic.

Similarly, an Oxidation-Reduction Potential (ORP) probe <u>returns a voltage</u> proportional to the tendency of the solution to gain or lose electrons from other substances (which is linked directly to the pH of a substance)

A minor increase in pH levels can cause a oligotrophic (rich in dissolved oxygen) lake to become eutrophic (lacking dissolved oxygen).

Why observe the sea?

Measurements in Ocean : Chlorophyll, Turbidity, CDOM

Chlorophyll is a color pigment found in plants, algae and phytoplankton. This molecule is used in photosynthesis, as a photoreceptor.

- Photoreceptors absorb light energy, and chlorophyll specifically absorbs energy from sunlight.
- Chlorophyll makes plants and algae appear green because it reflects the green wavelengths found in sunlight, while absorbing all other colors

there are 6 different chlorophylls that have
been identified
The different forms (A, B, C, D, E and F) each
reflect slightly different ranges of green
wavelengths.
Chlorophyll A is the primary molecule
responsible for photosynthesis

Measurements in Ocean : Chlorophyll, Turbidity, CDOM

Turbidity measurements are often used as an indicator of <u>water quality</u> based on clarity and estimated total suspended solids in water

The turbidity of water is based on the amount of light scattered by particles in the water column. The more particles that are present, the more light that will be scattered

Photo Credit: NASA Visible Earth, via USGS

Measurements in Ocean : Chlorophyll, Turbidity, CDOM

Chromophoric (or Colored) Dissolved Organic Matter is the parameter that can be measured in aquatic environments as a product of decaying material. CDOM is largely a subset of DOM, or dissolved organic matter

The decay releases organic substances that stain waters and can have effects on light absorption and other aspects of water quality. Because it has effects on the conditions that aquatic life adapt to for survival, such as salinity, turbidity and light penetration, <u>CDOM plays a large role in the health of aquatic system</u>

Turbidity, or the cloudiness of water due to suspended solids and other substances, is closely linked with CDOM. But more chromophoric dissolved organic matter does not always mean that turbidity will go upscattered

The Mini CO2 instrument uses infrared detection to measure the partial pressure of CO2 gas dissolved in liquids

CNR

Sensor Performance				
CO ₂ Measurement Ranges	0-2000 µatm CO ₂ 0-5000 µatm 0-1% (10,000 µatm) 0-100% *other ranges available			
Total Dissolved Gas Pressure	0-2000 mbar			
Accuracy: pCO ₂	± 3% of max range			
TDGP	± 1%			
Equilibration rate (t63)	3 minutes			
Resolution	0.1% of max range			

The Mini CH4 instrument uses infrared detection to measure the partial pressure of CH4 gas dissolved in liquids. Conversion to dissolved methane concentration is simple with known temperature and salinity values

Sensor Performance		
pCH ₄ Measurement Ranges	0-1% CH4 ; by volume (~0-300 µg/L; by mass) 0-10%v/v (~0-3 mg/L) 0-100%v/v (~0-30 mg/L)	
Total Dissolved Gas Pressure	0-2 bar	
Accuracy: pCH ₄	± 3% of max range	
TDGP	± 1%	
Equilibration rate (t63)	~8 minutes (with water-pumped head)	
Resolution	0.1% of max range	

Fano Marine Center, March 1, 2024

Pierluigi Penna – CNR IRBIM Ancona

Why observe the sea?

Measurements in Ocean : water current

CNR

Using the acoustic Doppler technique, ADCPs measure water movement by interpreting sound waves transmitted by and reflected back to the instrument from particles in the water, marine life, etc

A vessel-mounted ADCP can produce a profile of the currents between the vessel and the seabed while the vessel is moving

Measurements in Ocean : waves

Measurements in Ocean : light

Sunlight in the ocean is important for many reasons: It heats sea water, warming the surface layers; it provides energy required by phytoplankton; it is used for navigation by animals near the surface; reflected subsurface light is used for mapping chlorophyll concentration from space

Measurements in Ocean : light

The **Spectroradiometer** Ramses is composed by 2 sensors (ACC and ARC) which measure the downwelling irradiance $[Eu(z,\lambda)]$ and upwelling radiance $[Lu(z,\lambda)]$ in the wavelengths 320-950 nm in 190 spectral channels with a resolution of 0.3 nm. Owing to the greater number of bandwidths, it will be possible to obtain a greater amount of information on the water column optical properties (Chla, CDOM, TSM)

CNR

CNR

Photosynthetic Active Radiation (PAR) irradiance includes *in vivo* absorption bandwidths of:

- chlorophyll a, b, and c
- the pigments contained within the cytoplasm of blue-green algae (cyanobacteria)
- the chloroplasts of plants (including phytoplankton) that capture light

energy for photosynthesis

Water Valve

Vent

The SBE 32 Carousel water sampling package consists of:

- water sample bottles with their lanyards
- trigger mechanism
- upper and lower pylons that hold the bottle on the frame
- upper and lower frame that protects the package from collision with the side of the ship

The Carousel trigger mechanism is an electro-mechanical device. It operates by energizing a solenoid magnet that pulls a mechanical trigger, releasing the nylon lanyards that hold the top and bottom caps of the water sampler open.

Why observe the sea?

Fano Marine Center, March 1, 2024

The Global Ocean Observing System

European Global Ocean Observing System

Why observe the sea?

Fano Marine Center, March 1, 2024

ARGO float

CNR IRBIN

Maps displaying statistics about the Argo array, including its extensions into high latitudes and marginal seas, biogeochemical sensors, communication systems, float type, etc., can be found in the map section on the Argo Information Centre website.

Why observe the sea?

CNR

Fano Marine Center, March 1, 2024

ARGO float

https://dataselection.euro-argo.eu/

Why observe the sea?

Fano Marine Center, March 1, 2024

The Global Ocean Observing System

European Global Ocean Observing System

Why observe the sea?

Fano Marine Center, March 1, 2024

Why observe the sea?

CNR IRBIM

Fano Marine Center, March 1, 2024

seaGlider

Fano Marine Center, March 1, 2024

seaGlider

CNR

ORIGINAL RESEARCH article Front. Mar. Sci., 16 July 2019 Sec. Marine Molecular Biology and Ecology Volume 6 - 2019 | https://doi.org/10.3389/fmars.2019.00373

In situ Autonomous Acquisition and Preservation of Marine Environmental DNA Using an Autonomous Underwater Vehicle

waveGlider

Why observe the sea?

Fano Marine Center, March 1, 2024

The Global Ocean Observing System

European Global Ocean Observing System

Why observe the sea?

Fano Marine Center, March 1, 2024

Voluntary Observing Ship (VOS)

JOURNAL ARTICLE

A framework for multidisciplinary science observations from commercial ships 👌

Alison M Macdonald ➡, Luna Hiron, Leah McRaven, Laura Stolp, Kerry Strom, Rebecca Hudak, Shawn R Smith, Julia Hummon, Magdalena Andres

ICES Journal of Marine Science, fsae011, https://doi.org/10.1093/icesjms/fsae011 **Published:** 19 February 2024 Article history ▼

CNR IRBIN

Voluntary Observing Ship (VOS)

Ship-Based Contributions to Global Ocean, Weather, and Climate Observing Systems Front. Mar. Sci., 02 August 2019 Sec. Ocean Observation Volume 6 - 2019 | https://doi.org/10.3389/fmars.2019.00434

Why observe the sea?

Fano Marine Center, March 1, 2024

eXpendable BathyThermograph (XBT)

CNR

An EXpendable BathyThermograph (XBT) with it's probe inside a canister (top). On the right is an exploded view of the XBT.

An XBT is a probe that is dropped from a ship and measures the <u>temperature</u> as it falls through the water

A resistance in the head of the probe and a very thin twin-wire, connecting the probe to the equipment on the ship, compose the electronic circuit for measuring the water temperature

eXpendable BathyThermograph (XBT)

CNR

An EXpendable BathyThermograph (XBT) with it's probe inside a canister (top). On the right is an exploded view of the XBT.

A fall-rate equations are used to derive the depth of the XBT as a function of time after the XBT is deployed into the ocean:

 $z(t) = a t^2 + b t,$

where z(t) is the depth of the XBT in meters, and a, b are constants determined using theoretical and empirical methods.

eXpendable BathyThermograph (XBT)

XXIX Italian national expedition to Antarctica, 2013-2014

CNR

AdriFOOS

Adriatic Sea (Fishery and Oceanography Observing System)

The Global Ocean Observing System

European Global Ocean Observing System

Why observe the sea?

Fano Marine Center, March 1, 2024

Animal tagging

Fano Marine Center, March 1, 2024

Integrated Ocean Observing System Animal Telemetry Network

http://oceanview.pfeg.noaa.gov/atn/

Why observe the sea?

CNR

D) IOOS

Fano Marine Center, March 1, 2024

Animal tagging

Fano Marine Center, March 1, 2024

The Global Ocean Observing System

European Global Ocean Observing System

Why observe the sea?

Fano Marine Center, March 1, 2024

Mooring

XXI Italian national expedition to Antarctica, 2005-2006

Ante	a XXXVII (2021-2022) Mooring B				
Prof. (m)	Tipo componente	Lung, Parz (m)	Grafico	Pesi (kg)	Spinte (kg)
146.3	Omega 14 + Echosounder WBAT + omega 14	1.8		23.2	77.5
148.1	maillon rapide + cavo dynema + maillon rapide	25.0			
173.1	Omega 14 +Boe arancioni M dane glass buoy (3+3+3)X10 kg	1.5			90.0
174.6	maillon mpide+ ca vo bianco + SBE37 SN 4118 (183 m)+ maillon mpide	185.0	D	2.0	
359.6	Boe gialle M clane glass buoy (3+3+3)X10 kg	1.0	8		90.0
360.6	maillon mpide + CaVO FOSSO + maillon mpide	45.0		0.5	
405.6	Omega 14 +2X3 boe MCLANE gialle 10kg + Omega 14	1.0	8		60.0
445.6	maillon rapide + CBVO blu + maillon rapide	40.0		0.5	
446.6	cavo bianco + orrega 14	4.0	Î	0.2	
450.6	cavo bianco + omega 14	1.0			
451.6	Trappola Medine 13cup + SBE16-04 SN 1437 + seapoint 1533	1.5	Ŵ	40.0	
453.1	omega 14 + Cavo bianco + mailon rapide	1.0	T 🛛		
454.1	cavo kevlar rosso + mailion rapide	100.0	L,	0.3	
554.1	2 boe Nautilus 25 kg con blocchetti neri + maillon rapide	2.0			50.0
556.1	omega 14 +Corrent. Aanderaa Seaguard SN 444+omega 14	0.7	3	15.0	
556.8	maillon mpide + Cavo FOSSO + maillon rapide	5.0	ī		-
561.8	3 boe Nautilus 25 X 3	3.0	XXX		75.0
564.8	ovale+ mailion rapide + Cavo Marlowe bianco + omega 14	5.0		0.5	
569.8	Acoustic Releaser on 2745 Type OCEANO AR861825, IXBLUE		-		
570.3	Acoustic Releasers n 2745 Type O CEANO A R861B28, 0KB LUE Battery Type: Tadiran 1, 5530/8 lithium: 18:3, 65V-15Ah	0.5		50.0	
570.3	Ovale + catena con 2 maniglioni Aanderaa 16	0.2	V	2.0	
570.5	Cavo grigio + manigl 20	5.0	1	0.0	
575.5	catena + manigl 20 + girella18+ Manig da 20	5.0	ų.	30.0	
580.5	Zavorra 3 ruote neozelandese (3*260)	0.5		780.0	
581.0	Fondo	2			2
	TOTALI	434.7	and the state of the	944.2	442.5
Spint	a netta al recupero (ka):		here serverg	134.2	308.2
apint	a netta ai recupero (kg).				300.3

Why observe the sea?

Fano Marine Center, March 1, 2024

The Global Ocean Observing System

European Global Ocean Observing System

Why observe the sea?

Fano Marine Center, March 1, 2024

Fixed meteo oceanographic observing site

ANCONA

Marine weather station located in the Port of Ancona.

LESINA

Station installed at the Lesina Lagoon

PORTO RECANATI

Marine weather station 200 meters from the coast near the mouth of the Potenza river

LESINA

Weather station located on the roof of the IRBIM headquarters in Lesina

ANCONA

Weather station located on the roof of the IRBIM headquarters in Ancona

SENIGALLIA

Marine weather station 1.5 miles off the coast of Senigallia (Ancona)

https://www.irbim.cnr.it/en/mare-in-tempo-reale/

Why observe the sea?

Fano Marine Center, March 1, 2024

The Global Ocean Observing System

European Global Ocean Observing System

Why observe the sea?

Fano Marine Center, March 1, 2024

meteo oceanographic buoy

Weather-marine station installed on buoy off the coast of Fano

PORTO RECANATI

Marine weather station installed on a buoy near the artificial barrier of Porto Recanati

https://www.irbim.cnr.it/en/mare-in-tempo-reale/

Why observe the sea?

Fano Marine Center, March 1, 2024

The Global Ocean Observing System

European Global Ocean Observing System

Why observe the sea?

Fano Marine Center, March 1, 2024

Water Quality Integrated System (WQIS) FANO Arzilla river

https://www.irbim.cnr.it/en/mare-in-tempo-reale/

Why observe the sea?

Fano Marine Center, March 1, 2024

prototypes

Article

The AMERIGO Lander and the Automatic Benthic Chamber (CBA): Two New Instruments to Measure Benthic Fluxes of Dissolved Chemical Species [†]

Federico Spagnoli ¹,*^D, Pierluigi Penna ¹, Giordano Giuliani ¹, Luca Masini ² and Valter Martinotti ³

prototypes

PLOS ONE

RESEARCH ARTICLE

Accounting for environmental and fishery management factors when standardizing CPUE data from a scientific survey: A case study for *Nephrops norvegicus* in the Pomo Pits area (Central Adriatic Sea)

Matteo Chiarinio^{1,2}*, Stefano Guicciardi¹, Silvia Angelinio^{1,3}, lan D. Tuck⁴, Federica Grilli¹, Pierluigi Pennao¹, Filippo Domenichetti¹, Giovanni Canduci¹, Andrea Belardinelli¹, Alberto Santojanni¹, Enrico Arneri¹, Nicoletta Milone⁵, Damir Medvešek⁶, Igor Isajlovićo⁶, Nedo Vrgoč⁶, Michela Martinellio¹

UWTV Under Water TV

Fano Marine Center, March 1, 2024

Pierluigi Penna – CNR IRBIM Ancona

Why observe the sea?

Internet of Underwater Things (IoUT)

Why observe the sea?

Fano Marine Center, March 1, 2024

Are you tired?

Why observe the sea?

Fano Marine Center, March 1, 2024

break

Why observe the sea?

Fano Marine Center, March 1, 2024

Architecture of an Ocean Monitoring and Forecasting System

Why observe the sea?

CNR IRBIN

Fano Marine Center, March 1, 2024

Satellite and models

Satellites

https://marine.copernicus.eu/explainers/operationaloceanography/monitoring-forecasting/satellites

Models

https://marine.copernicus.eu/explainers/operationaloceanography/monitoring-forecasting/models

Fano Marine Center, March 1, 2024

Architecture of an Ocean Monitoring and Forecasting System

- Ocean models, in situ and satellite observations are the main components of an ocean monitoring and forecasting system.
- Observational data (satellite and/or in situ) can be integrated into the numerical models to ensure they are as close to reality as possible. This process is called 'data assimilation'.
- While the observations only represent a portion of the global ocean, models complete the missing information with realistic ocean dynamics to provide an overall picture

we use

CNR

- 1. Theory
- 2. Observations
- 3. Numerical models to describe ocean dynamics.

None is sufficient by itself!

Fano Marine Center, March 1, 2024
Architecture of an Ocean Monitoring and Forecasting System

By combining theory and observations in numerical models we avoid some of the difficulties associated with each approach used separately

Continued refinements of the combined approach
are leading to ever-more-precise descriptions of the ocean, sea and coastal area

CNR

Fano Marine Center, March 1, 2024

Architecture of an Ocean Monitoring and Forecasting System

The ultimate goal is to know the ocean well enough to predict the future changes in the environment, including <u>climate change</u> or the response of fisheries to over fishing

Data, numerical models, and theory are all necessary to understand the sea

Eventually, an understanding of the ocean-atmosphere-land system will lead to predictions of future states of the system

The combination of theory, observations, and computer models is relatively new (operational oceanography 1995)

Exponential growth in computing power has made available powerrful computers capable of simulating important physical processes and oceanic dynamics Link <u>https://earth.nullschool.net/</u>

Al will make an important contribution to improving the implementation of numerical models, lowering the uncertainty of predictions

Lab activity

Fano marine center Buoy: data series and real time data

Comparison with Copernicus model data

Why observe the sea?

Fano Marine Center, March 1, 2024

We construct long time series

Why observe the sea?

CNR

Fano Marine Center, March 1, 2024

Why observe the sea?

We observe phenomenon at microscale

Why observe the sea?

Fano Marine Center, March 1, 2024

02/14

02/16

02/18

02/20

02/22

02/24

02/26

Mean

10.2 °C

10.3 °C

02/28

Max

12.2 °C 12.6 °C 8.46 °C

12.3 °C 12.6 °C 8.47 °C

11.4 °C 12.7 °C 17.6 °C 8.72 °C

Min

Last *

We calibrate/validate ocean models

Why observe the sea?

8°C

01/31

Temperatura MARE [°C]

Temperatura MARE ADCP [°C]

Temperatura CMEMS MODEL [°C]

02/02

02/04

02/06

02/08

02/10

02/12

Fano Marine Center, March 1, 2024

02/14

02/16

02/18

02/20

02/22

02/24

02/26

Mean

10.2 °C

10.3 °C

02/28

Max

12.2 °C 12.6 °C 8.46 °C

12.3 °C 12.6 °C 8.47 °C

11.4 °C 12.7 °C 17.6 °C 8.72 °C

Min

Last *

https://goosocean.org/why-observe-the-ocean/

8°C

01/31

Temperatura MARE [°C]

Temperatura MARE ADCP [°C]

Temperatura CMEMS MODEL [°C]

02/02

02/04

02/06

02/08

02/10

02/12

Fano Marine Center, March 1, 2024

Why observe the sea? Some effects of the climate change in Adriatic sea

Transetto Senigallia Meteotsunami Inondazione Pesaro simulate Moria mosciolo Blue crab Attenti a quei 4 biodiversità

Open discussion

Where does a fish live??

Why observe the sea?

Fano Marine Center, March 1, 2024

Thank you for attention !!

Se mi guardo attorno, Penso che son fortunato, Non so chi ha creato il mondo, ma so che era innamorato Vecchioni/Alfa